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Received 25 May 1988, in final form 28 July 1988 

Abstract. Self-similarity of a two-dimensional quasilattice with an n-gonal point symmetry 
has been investigated for even n ( n  3 8). It is shown that for any n, an n-gonal quasilattice 
has a self-similarity characterised by a complex number T ;  on inflation the quasilattice is 
scaled by 171 and subsequently rotated by arg T. T is a PV unit of the n-cyclotomic field 
Q(l ) ,  g=exp(2a i /n) ;  T satisfies (i) T and T-' are both algebraic integers in Q(l ) ,  (ii) 

I T /  > 1 and (iii) / T ' I  < 1 for any conjugate T' but i; (the complex conjugate) of T in Q(5). 
PV units are calculated for every n-gonal quasilattice whose multiplicity, m = 9 ( n / 2 )  with 
9 being the Eulerian function, is less than 5; m = 2 for n = 8, 10, 12, m = 3 for n = 14, 18 
and m = 4 for n = 16,20,24,30. It is found that a quasilattice has two or more independent 
scales of self-similarity if its multiplicity is larger than 2. 

1. Introduction 

Since the discovery of an icosahedral quasicrystal by Schechtman et a1 (1984), there 
have been published extensive investigations on quasilattices, which are presumed to 
be structural models of quasicrystals (for a review, see Henley (1987)). A quasilattice 
is a quasiperiodic lattice with a non-crystallographic point symmetry. A Penrose lattice, 
a representative quasilattice in two dimensions ( 2 ~ ) ,  is the set of vertices of the Penrose 
tiling which tiles the plane in terms of two kinds of rhombic tiles (de Bruijn 1981). It 
has a decagonal symmetry as its macroscopic point symmetry. It has another remarkable 
structural property, i.e. self-similarity; if vertices belonging to some types of the vertices 
of the Penrose tiling are retained but others are discarded, we obtain a Penrose lattice 
(and a tiling associated with it) whose scale is larger by the golden ratio T~ = (1 +v'3)/2 
than that of the original lattice (de Bruijn 1981). Similar inflation rules are known for 
an octagonal quasilattice in 2~ (i.e. the Ammann quasilattice of Grunbaum and 
Shephard (1986)), dodecagonal ones in 2~ (Stampfli 1986, Niizeki and Mitani 1987) 
and an icosahedral one in 3~ (Katz and Duneau 1986). 

The three numbers, 1 +a, (1 +v'3)/2 and 2+&, which appear as the ratios of 
self-similarity of octagonal, decagonal and dodecagonal quasilattices, respectively, are 
units in the respective algebraic field; a number in an algebraic field is a unit if it and 
its inverse are both algebraic integers. Moreover, the self-similarity ratios are PV 

numbers; a PV number is a real algebraic integer satisfying (i) that it is larger than one 
and (ii) the absolute value of any conjugate of it is smaller than one (Salem 1983). 
The importance of a PV number in the self-similarity of a quasiperiodic pattern has 
been pointed out by Pleasants (1984). 

A general method of constructing a quasilattice with a non-crystallographic point 
symmetry group G in d dimensions is the projection method or, more exactly, the cut 
and projection method (Krammer and Neri 1984, Duneau and Katz 1985, Janssen 
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1986). In this method, we start from an I-dimensional ( I >  d )  lattice L whose point 
group is isomorphous to G. We take a d-dimensional invariant subspace Ed of the 
1-dimensional Euclidean space Ef against G. A part of L is cut by an appropriate strip 
being parallel to Ed and, subsequently, the lattice points in the part are projected onto 
Ed,  yielding a d-dimensional quasilattice with point symmetry G. This quasilattice 
has a self-similarity if there exists a linear transformation of Ed,  satisfying (i)  that it 
is volume-conserving, (ii) it is an automorphism of L (a one-to-one mapping onto 
itself), (iii) it leaves Ed invariant and (iv) it acts on the orthogonal complement of Ed 
in Er as a contractive linear transformation (Katz and Duneau 1986, Gahler 1986). 
Note, however, that the relationship between a quasilattice constructed with the 
projection method and a quasiperiodic pattern with Pleasants' method has not been 
established yet. 

In this paper, we will show that every two-dimensional quasilattice obtained with 
the projection method has a self-similarity characterised by a PV unit in the n-cyclotomic 
field Q ( l ) ,  f = exp(2ri/n),  provided that the point symmetry of the quasilattice is D,, 
the dihedral group with order 2 n  or, more simply, the point group of a regular n-gon. 
We introduce complex PV numbers. If a quasilattice has a self-similarity characterised 
by a complex PV unit, the inflation consists not only of a dilatation but also of a rotation. 

In § 2, we will introduce a higher-dimensional n-gonal lattice, whose point symmetry 
is isomorphous to the point symmetry D, in 2 ~ .  In 0 3, an n-gonal quasilattice in 2~ 

is constructed with the projection method from the n-gonal lattice. In § 4, we will 
discuss self-similarity of the n-gonal quasilattice. In § 5 ,  'the complex self-similarity 
ratios' of n-gonal quasilattices are calculated for even integers such that n S 20, n = 24 
or 30. In 9 6, we investigate self-similarity of the diffraction pattern of an n-gonal 
quasilattice. Finally in § 7, we discuss related subjects. 

2. An n-gonal lattice 

The Euclidean space in 2 ~ ,  E 2 ,  can be identified with the complex plane C and a 
vector in E2 with a complex number. Let l = e x p ( 2 r i / n )  (=&,), where n(B3)  is an 
integer. Then, 1, 5, . . . , l"-' represent the n vertices of a regular n-gon centred on 
the origin. Multiplying a fixed complex number, a( ZO), onto C( = E2)  gives rise to a 
rotation of C by arg a and a subsequent scale transformation by [al. In particular, a 
multiplication by f is equivalent to a pure rotation by 2.rr/n. The order of 5 as a 
transformation of C is n, i.e. lk  # 1 for 0 < k < n but 5" = 1. 

is an algebraic number whose order as an algebraic number is given by b(n), 
where 4 is the Eulerian function in number theory. An algebraic field Q ( f ) ,  generated 
by is called an n-cyclotomic field (for the properties of n-cyclotomic fields used 
throughout this paper, see Washington (1982) or an appropriate textbook on number 
theory of algebraic integers). We can restrict our argument only to the case where n 
is even because Q ( l , , ) = Q ( l 2 , )  if n is odd. + ( n ) = 4  for n = 8 ,  10 and 12, b ( n ) = 6  
for n = 14 and 18, 4 ( n )  = 8 for n = 16, 20, 24 and 30 and +(n) 5 10 for other even n. 
Note that I = 4 ( n )  is an even integer. 5 satisfies an algebraic equation, P, , (x )=O,  
where P , ( x )  = co+ c lx  +. . . + cf-,xr-'  + x r  is the n-cyclotomic polynomial, where the c, 
are integers ( co = 1). The polynomial is irreducible over Q, the rational field. Other 
roots of P , ( x )  = 0 are the conjugates of l in Q ( 5 ) .  Let m = 112. Then, m - 1 of 2m - 1 
conjugates of 5 is written as lk, where 1 < k < n/2 and k has no common divisors with 
n. We shall denote them as I t ,  l", . . . , l (m-l) .  Then, the other m conjugates of 5 are 
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given by f ( m + k ) =  ck)  (the complex conjugate), k =0, 1 , .  . . , m - 1 .  We shall call m 
the multiplicity of Q(f). Note that 6 k  = arg f ' k '  is a multiple of 27r/n for every k. Let 
a = a o + a l f + .  . . + a l - , f ' - ' ~  Q(f)(akE Q). Then, the kth conjugate of a in Q(f) is 
given by ( ~ ( ~ ) = a ~ + a , f ( ~ ) + .  . . + a l - , ( f ( k ) ) ' - l .  

1 ,  5,. . . , f ' - '  are linearly independent over Q and so over 2, the integral domain 
of real integers. These 1 complex numbers form an integral basis of Z ( f ) ,  the ring of 
algebraic integers in Q(f). That is, 

~ ( 5 )  = {no+ n , f + .  . .+ nl- , f ' - ' lnk  E z}. 
f ' ,  f'-l,. . . , f"-'  are given with integer coefficients in terms of the basis. Therefore, 
only 1 of n vertex vectors of a regular n-gon are linearly independent over Q. 

Let us introduce an l-dimensional complex row vector by U = (1,f, . . . , f ' - l ) .  Then, 
fu  is also a complex vector whose components belong to Z ( f ) .  Accordingly, there 
exists one integer matrix R such that f u  = u R .  More precisely, we obtain Rz,,-l = 1 for 
i = 1 - ( 1  - 1) and R8,1-l = -c,  for i = 0 - ( 1  - 1 )  but other matrix elements vanish. Since 
l-' belongs to Z ( f ) ,  R has to be a unimodular matrix. In fact, we can show easily 
that det R = 1 .  Obviously, the order of R is n;  R k  # I for 0 < k < n but R" = I, where I 
is the unit matrix in 1 dimensions. Note that P,,(x) is the characteristic polynomial of 
R: det(xl - R) = P,,(x). f and its conjugates f ' ,  . . . , f"-" are different eigenvalues of 
R, while U and its conjugates U', . . . , U('-') with u ( ~ )  = ( 1 ,  f ( k ) ,  . . . , ( f (k)) ' - l )  are the 
corresponding left eigenvectors. Note that u ( ~ + " ' )  is the complex conjugate of d k )  for 
k = 0 , 1 ,  . . . ,  m - 1 .  

Let U be an m x 1 complex matrix whose kth row is given by u ( ~ ) ,  k = 0, 1 ,  . , . , m - 1. 
Then, UR = DU, where D is an m x m diagonal unitary matrix whose kth element is 
equal to f ( k ) .  Let e o ,  e l , .  . . , e l - ,  be the column vectors of U. Then, they are m- 
dimensional complex vectors which are linearly independent over the real field R; this 
follows from linear independence of 2m complex row vectors, u ( ~ ) ,  idk), k =  
0 , 1 , .  . . , m - 1 .  If follows that 

{Xo&o+X1&1+. . .+X/-1&/-1IXkER}'  c" ' COCO. . c 
where the symbol = stands for an isomorphism relationship between vector spaces 
with Euclidean norms. Since C is isomorphous to E2 (the Euclidean norm of Z E  C 
is lzl), we can conclude that C" = El. Therefore, we shall identify C with E2 and C" 
with E!. We take c 0 ,  E , , .  . . , sf-, as the basis vectors of C m ( = E l )  though they are not 
orthonormal. Moreover, we denote by L = L'"' the 1-dimensional real lattice generated 
by the basis vectors 

L= { n o s o +  nlEl +. . .+ nl- lEl - l /nk  E Z } .  ( 1 )  

Let us introduce a linear transformation p of C" by p ( e O ,  e l , .  . . , = 
(cot E ~ , .  . . , E ~ - , ) R .  Then, p is an orthogonal transformation of C"; pz = Dz for z E C", 
so that lpzl= IzI. Since R is a unimodular matrix, p is an element of the point symmetry 
of L. Note that each component in C" = CO CO. .  .O C is an invariant subspace 
against p, which acts on the kth component as a multiplication of f ' k '  (a rotation by 6 k ) .  

Every element of ii belongs to Z ( f ) ,  so that there exists an integer matrix S such 
that ii = US. It follows that S2 = I because U' = U. Therefore, S is also a unimodular 
matrix. Obviously, U = US. Accordingly, we can define an orthogonal transformation 
(+ of El = C" by using S; U acts on each component in C" as the complex conjugate 
operation and U is a symmetry element of L. 
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The point group D, is isomorphous to a finite group G generated by p and U ;  G 
is a point symmetry group of L and it acts on the zeroth component of C" as D,. 
Note that each component in C" is an irreducible invariant subspace against G = D,. 
Note also that the kth component of t = noao+ n l E l  +. . . + nf-l&f-l E L is equal to 
n o + n , l ( k ) + .  . .+ nl.-l(4''k))f-1, which is nothing but the projection of z onto the kth 
subspace. 

are lattice vectors with 
an equal length (6) of L. They represent n nearest neighbours of the lattice site at 
the origin. Their projections onto the kth subspace in C" are 1, 5'k', 
(l 'k')2,.  . . , (4"k')"-', which represent the vertices of the 'unit' regular n-gon in the 
relevant space; the n-complex numbers are rearranged to 1, 5 , .  . . , l"-'. Accordingly, 
we may call L an n-gonal lattice. The projection of L onto the first component in C" 
is the 'standard (quasi-)lattice' in the terminology of Mermin et a1 (1987). 

The arguments in the present section apply equally to the cases of crystallographic 
point symmetries, D4 and D6. In these cases, the multiplicities are equal to 1. L(4) 
and L(6) are the square and the triangular lattices, respectively. 

If n = 2 p  with p being a prime integer ( p  2 5 ) ,  L'"' is an n-gonal lattice in p - 1 
dimensions. A decagonal lattice in 4~ is discussed by Janssen (1986). 

If n = 2k,  k 2 3 ,  then 1 = 2k-1. We can show easily in this case that the basis vectors 
eo ,  e l ,  . . . , are orthogonal to each other. Hence, L'") is a simple hypercubic lattice 
in 1 dimensions. 

If n = 2 k 3 k '  with k, k ' s  1, then, I = n/3 and m = n/6. A two-dimensional lattice 
generated by &k and &,+k is a triangular lattice for k = 0, 1, . . . , m - 1 and different 
triangular lattices are orthogonal to each other in E,,  so that L'"' in this case is an 
1-dimensional hyperhexagonal lattice which is a direct proproduct of m identical 
triangular lattices (i.e. hexagonal lattices in 2 ~ ) .  More generally, if n = 2kpk' with k, 
k' 2 1 and p (  2 5 )  being a prime integer, L'"' is a direct product of ( m / 2 p )  of identical 
2p-gonal lattices in p - 1 dimensions. 

Let &k =pk&0, k =  Z, 1+ 1, .  . . , n - 1. Then eo, sl , .  . . , 

3. A construction of an n-gonal quasilattice in ZD 

We begin by decomposing C" into the external and internal spaces as C" = CO C"-', 
respectively, where C ( = E 2 )  is the zeroth invariant subspace against G (*D,) and 
C m - I  ( = E I e 2 )  is the orthogonal complement of C in C" (*E , ) .  Cm-' is also an 
invariant subspace against G but it is reducible unless m = 2 (or 1 = 4). G acts on Cm-' 
as a point group DL (*D,). 

Let W be a finite domain in P"' and assume that it is invariant against DL. Then 
the following set of points in C is a two-dimensional quasilattice with point symmetry 
D, (an n-gonal quasilattice): 

LQ(4,  W ) = { P z l z ~ L a n d  P ' Z E ~ +  W} ( 2 a )  

where P and P' are projection operators to subspaces C and Cm-' ,  respectively, 4 is 
an ( m  - 1)-dimensional complex vector and (Yk = P'&k, k = 1,2,  . . . , I  - 1. Obviously, 
LQ(4 ,  W) is a subset of Z ( l ) .  W is called the window and 4 the phase vector. Two 
quasilattices with a common W but different 4 belong to the same local-isomorphism 
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(LI) class (for the definition of LI class, see Levine and Steinhardt (1986)). We shall 
denote an LI class characterised by W as C( W). W has, by assumption, the centre of 
symmetry which coincides with the origin in C"-'. 

Thus, an octagonal or 16-gonal quasilattice can be, for example, obtained from a 
simple hypercubic lattice in 4~ (Ishihara et a1 1988) or 8 ~ ,  respectively. They are 
obtained, alternatively, as the dual lattices of a tetragrid and an octagrid, respectively 
(Niizeki 1988b). On the other hand, dodecagonal, 18-gonal and 24-gonal quasilattices 
are obtained from hyperhexagonal lattices in 4 ~ ,  6~ and 8 ~ ,  respectively (Niizeki and 
Mitani 1987). They are, alternatively, obtained as the dual lattices of double, triple 
and quadruple honeycomb grids (Stampfli 1986, Niizeki 1988a, Korepin et a1 1988), 
respectively. 

4. Self-similarity of an n-gonal quasilattice in ZD 

Usual PV numbers are defined only for a real algebraic field (Salem 1983). In this 
paper, we shall extend the definition to the case of the cyclotomic field Q ( l ) ,  which 
is a complex field. A number T in Q(5) has 2m conjugates including itself, T, 

T ' ,  . . . , , p m  - 1) , but the second half of them are the complex conjugates of the first half, 
dk+") = f ( k ) ,  k = 0, 1, . . . , m - 1. In particular, T ' ~ + " )  = d k ) ,  k = 0,  1, . . . , m - 1, if T is 
real. Therefore, it is natural to define a PV number in Q(5) as follows: T E  Q ( l )  is a 
PV number if (i)  I T /  > 1 and (ii) ldk)l < 1 for k = 1,2, .  . . , m - 1. 

If T is a PV number and also a unit in Q ( l ) ,  then T is a PV unit. In this case, let 
77 = TT' . . . T(" - ' ) .  Then r] is a unit and ~ f j (  = 77'. . . d2"-')) is a real integer. Therefore, 
we can conclude that r]7j = 1 and r] = C k  for some k. 

Let T be a PV unit in Q ( 1 ) .  Then, there exists an integer matrix T satisfying TU = UT 
because T E  Z ( 5 ) .  Moreover, T is a unimodular matrix because T - ' E  Z ( 5 ) .  It follows 

Hence, UT = VU with V being an m-dimensional diagonal matrix whose kth element 
is equal to d k ) .  The d k )  are eigenvalues of T and the u ( ~ )  are the corresponding left 
eigenvectors. Note that det T =  r ] f j  = 1. Since T E  Z ( l ) ,  T is written as T =  

j ,+ j , [+ .  . .jl-ll'-' withthej, being integers. It follows thatT=j,l+j,R+. . .+j,-,R'-'. 
Using the basis vectors & k ,  we can define with T a linear transformation x of 

E, = C". ,y is an automorphism of L because T is unimodular. Moreover, each 
component in C" is an invariant subspace against x, which acts on the kth supspace 
as a multiplication of T( , ) .  It follows that x acts on C in C" = CO Cm-' as a 
homogeneous similarity transformation (HST) characterised by T,  while it acts on C"-' 
as a contractive linear transformation (CLT) because /dk)l < 1 for k = 1,2, .  . . , m - 1. 
We shall denote by x' the restriction of x onto Cm-' .  Note that x is not an orthogonal 
transformation of C" (=E,)  but a volume-conserving one. Note also that TP = 4( 
and x'P' = P'x. 

+ W are equivalent to xz E L and x 'P'z  E 

x'+ + X I  W, respectively. Then, it follows from (2a) that 

that T ( k ) U ( k ) =  U ( k )  T, k =  1,2, .  . . , m-1, where T ' ~ )  is the kth conjugate of T in Q(3) .  

Now, the conditions z E L and P'z E 

Lo(+, W )  = {Pz 1x2 E L and x 'P'z  E ,y'+ + X I +  + X I  W }  

so that 

7Lo(+, W ) = { p X z I x z ~  L and P ' x z ~ x ' + + x ' W } .  
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The right-hand side of the second equality is equal tot Lo(x'+, x' W )  because x is 
an automorphism of L. Replacing +'= ( X I ) - ' +  in place of + we obtain rL,(+', W )  = 
Lo(+,x'W). This means that two different LI classes C( W )  and C(x 'W)  are in fact 
similar. 

tends to a null mapping as N + CO. Therefore, (x')" W c W 
for some N. Actually, we may take N = 1 if W is an ( I  -2)-dimensional sphere in 
C"-' ( = E l - 2 )  or if it is sufficiently close to such a sphere. If N # 1, we may redefine 
T" to be r because T~ is also a PV unit. Therefore, we may assume that X ' W C  W 
Then, L,(+,x'W) is a sublattice of L,(+, W ) .  Thus, a sublattice of an n-gonal 
quasilattice La(+, W )  coincides with a transformation by r of another quasilattice 
LQ(+', W )  which belongs to the same LI class as that of L,(+, W ) .  This means that 
Lo( +, W) has a self-similarity characterised by 7; the relevant transformation is a 
combined operation of a dilatation by I T /  with a rotation by arg r (if arg T # 0). The 
inflation rule of the self-similarity of L,(+, W )  is to contract the window W to x' W. 

We shall call 7 the complex self-similarity ratio, though it is sometimes real. An 
n-gonal quasilattice always has a self-similarity for any n because every algebraic field 
includes an infinite number of PV units (Salem 1983). 

If r1 and r2 are PV units, then so is r1r2.  Therefore, the set of all the PV units in 
Q( 5) form a commutable semigroup, which we shall call the self-similarity semigroup 

Since x' is a C L T ,  (x ' )  

( S S S G ) .  

5. The self-similarity ratios of n-gonal quasilattices whose multiplicities are less 
than 5 

All the units in Q ( 5 )  form an Abelian group OU with respect to the multiplication, 
which is called the group of units. The cyclic group C ,  = { 1,5, . . . , I" - ' }  is a subgroup 
of %; each unit in C, is related to a rotational symmetry of an n-gonal quasilattice. 
The absolute values of other units than those in C ,  are not equal to one. According 
to the unit theorem due to Dirichlet, % is a direct product of C ,  and a free Abelian 
group generated by (m - 1) fundamental units. 

It is obvious that the S S S G  is embedded in %. The fundamental units of Q ( I )  may 
not all be PV units. In several cases presented later on, we can take PV units as the 
fundamental units. Then they generate OU but they do not usually generate the S S S G  

because taking the inverse of an element is not an allowed operation in a semigroup. 
If m = 2, there exists only one fundamental unit, which is assumed to be a PV unit. 
Then, a relevant quasilattice has only one scale of self-similarity. In contrast, a 
quasilattice in the case of m > 2  may have two or more independent scales of self- 
similarity. 

A maximal real subfield of Q ( I )  with I= l,, is Q ( [ ) ,  where [=  l+f - '=  
2 cos(27~/n) is an algebraic integer of order m. A real unit in Q ( I )  is also a unit in 
Q ( [ ) .  The group of units of Q ( [ )  has also (m-1)  fundamental units, which are, 
however, not always the fundamental units of Q ( 5 ) .  

If T is a PV unit, so is Lk7 for any k. Moreover, i: is also a PV unit. Therefore, we 
assume hereafter that 0 S arg r G T / n .  In fact, it is known that arg r can take 0 or r/ n 
but no other values. It follows that a complex PV unit takes the form r = fi exp(i.rr/n) 
with r, ( = [ - ' T ~ =  1 ~ 1 ~ )  being a real PV unit. 

A fundamental unit in Q ( J )  is written as (1 - l ( k ) ) / ( l  - C'"'), where Os k, k '< m. 
Some of the units of this form can be PV units. 
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5.1. The case of m = 2  

In the case of m = 2, the internal space is two dimensional as is the external one. This 
is realised only when n = 8,lO and 12. Then Q(lfl) (or Q ( & ) )  has only one fundamental 
unit. Q(&)  is a real quadratic field whose fundamental unit is 1 +a, (1 + f i ) / 2  or 
2 +fi according as n = 8,lO or 12, respectively. The first two units are also fundamental 
units of Q(&) and Q(llo), respectively. However, 2 + &  is not a fundamental unit of 
Q(l )  with 5 = lI2 but is factorised as 5 - l ~ ’  with T = 1 + 5 being a fundamental unit. 
Note that arg T (=7~/12)  is not a multiple of .n/6 ( = 2 ~ / 1 2 ) ,  so that T,= ( T I  
(=2  cos(7~/12) = (&+ l ) / f i =  1.973), ‘the platinum ratio’, does not belong to Q ( 5 , 2 )  = 
Q(&). The conjugate of T is T ’ =  1 - 

1 +d, (1 + f i ) / 2  and 1 + 112 are PV units and, accordingly, they are the complex 
self-similarity ratios of octagonal, decagonal and dodecagonal quasilattices, respec- 
tively. The inflation of an octagonal quasilattice by 1 +a is given by Griinbaum and 
Shephard (1986) and those of dodecagonal ones by 1 + l I 2  by Stampfli (1986) and 
Niizeki and Mitani (1987). We show in figure 1 an inflation of a decagonal quasilattice 
by (1+&)/2; the quasilattice is obtained from a decagonal lattice in 4~ by using a 
window of a regular decagon whose vertices are at 1, 5, L2, . . . ,5’ in the internal space. 

Figure 1. A decagonal quasilattice obtained from a decagonal lattice in 4~ (full lines) and 
its inflated version (broken lines) with the scale ~ ~ = ( l + d ) / 2 .  The bonds are drawn 
between ‘arithmetic neighbour’ pairs of sites. 

5.2. The case of m = 3  

In the case of m = 3, the internal space is four dimensional. This occurs only when 
n = 14 and 18. Q ( 5 )  with 5 = LI4 or LI8 has two fundamental units. 

In the case of n = 14, T~ = 1 + J 2 +  l-’ (=1  f 2  cos(2.n/7) = 2.247) and T~ = 7:- 1 
(94.049) are fundamental PV units; i2 is identical to the one reported by Gahler (1986) 
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Figure 2. An 18-gonal quasilattice (quasiperiodic tiling) obtained as a dual to a triple 
honeycomb grid and its inflated versions with the scales ( a )  T , =  1+2cos(n /9)  and ( b )  
T~ = T ~ ( T ~  - 1). The two scales are multiplicatively independent though algebraically depen- 
dent of each other. The tiling consists of four kinds of tiles, i.e an equilateral triangle and 
three rhombi whose acute inner angles are 20", 40" and 80". 



Selj3milarity of quasilattices in two dimensions: I 201 

as the self-similarity ratio of a 14-gonal quasilattice. T' and T~ are independent scales 
because log T1/log T~ is irrational. The third smallest PV unit, T~ = T , ( T ~  + 1) (=7.296), 
is related to T~ and T~ as T~ = T ~ ( T ~ ) - ' ,  which is, however, not a relationship as a 
semigroup. 

In the case of n = 18, T~ = 1 + l+ 5-' (=  1 + 2 cos( ~ / 9 )  = 2.879) and T~ = T: - T~ 

(f5.411) are fundamental PV units. We show in figures 2(a)  and 2(b) an 18-gonal 
quasilattice and its inflated versions by the two independent scales and T ~ ,  respec- 
tively. 

5.3. The case of m = 4 

The multiplicity takes m = 4 for n = 16, 20, 24, and 30 and the relevant algebraic field 
in each case has three fundamental units. In the present case we present only the PV 

unit with the smallest absolute value for each case. They are real for n = 16 and 30; 
7 = t 3 + 2 t 2 - l  with 5 = & 6  for n = 1 6  and ~ = 5 ~ + 5 ' - 2 5 - 1  with t=& for n=30.  
They are biquadratic algebraic integers; = T ~ (  T~ + w) (= 12.14) and T ~ , ,  = 
T~(T:+-)/~ (=4.783), where .rS=1+& and ~ ~ = ( 1 + 6 ) / 2  are silver and 
golden ratios, respectively. 

On the other hand, the PV units with the smallest magnitudes are complex for n = 20 
and 24; for n = 20, T = 1-2( 1 + 5 + . . . + 15) (= 14( 1 + 14)/( 5 - l ) ) ,  so that arg T = ~ / 2 0  
and 171 = cos( ~r /5) /s in(  7r/20) = 5.172 and for n = 24, T = (1 + l)(  l+ l-')( = 5 ' / ( 5  - l ) ) ,  
so that arg T = ~ / 2 4  and I T /  = 11 - lI-'= [2 s in(~/24) ] - '  = 3.831. We show in figure 3 
a 24-gonal quasilattice obtained from a hyperhexagonal lattice in 8~ and its inflated 
version by T. Contrary to the case of T being real, the 24 directions of the 'bonds' in 
the inflated lattice are different from those in the original lattice; the two systems of 
directions are rotated by ~ / 2 4  relative to each other. 

Figure 3. A 24-gonal quasilattice obtained as a dual to a quadruple honeycomb grid and 
its inflated version by the complex self-similarity ratio 7 = ( 1  + l)( l+ l-'). The directions 
of bonds in the inflated lattice are rotated by r / 2 4  from those of the original one, because 
T is essentially complex. 
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6. The self-similarity in the diffraction pattern of an n-gonal quasilattice 

The reciprocal space (the wavenumber space) of E, = C" = CO CO. . .@ C is also an 
I-dimensional Euclidean space E,,* = (C,)" = C, O C, 0. . .@ C, with C, = E2,, being 
a complex plane. It is decomposed into the reciprocal internal space and the external 
counterpart as C: = C,O C:-'. The Fourier transform (FT) of La(+, W) is given as 
the convolution of the FT of L and that of the window function (Zia and Dallas 1985, 
Katz and Duneau 1986). The FT of L is a sum of delta functions whose supports are 
the lattice vectors of L,, the reciprocal lattice of L. Consequently, a reciprocal lattice 
vector of La(+,  W) is represented by a complex number in C,  of the form p = Pg 
with gE L,, while the intensity is the absolute value of the Fourier component, W,(t) ,  
of the window function with respect to the wavevector t= P'g in CZ-'. 

The automorphism x of L yields an automorphism x, of L,. x, acts on the 
reciprocal basisvectors of L, as x , ( E ~ ,  E ? ,  . . . , E $ - ] )  = ( E $ ,  E ? ,  . . . , E : - ] )  (*T)-', where 
'T denotes the transpose of T. Therefore, (xJ' acts on C, as a HST characterised by 
T and on Cz-' as a CLT. 

If g e  L,  is transformed by (x,)-', p = Pg is inflated as .rP, while 6 = P'g is 
contracted. Thus, a series of Bragg spots with increasing intensities appear in the 
reciprocal space at (T)kpo ,  k = 0,1,2, . . . , where Po represents the starting spot. This 
has been observed by Elser (1985) and Levine and Steinhardt (1986) in their studies 
of an icosahedral quasilattice in 3 ~ .  We can observe this in the diffraction pattern of 
the decagonal lattice in figure 1 as presented in figure 4. An example of the case where 
T is a complex number can be found in Niizeki and Mitani (1987). 

7. Discussions 

As noted in P 4, the inflation rule of an n-gonal quasilattice is to narrow the window 
W to x' W If W is contrariwise extended to (x')-' W, new lattice points are introduced 
and the resulting quasilattice is similar to the original one with the ratio T-' because 
Lo(+, x' W) = 7-'L0(x'c$, W). Thus, an n-gonal quasilattice has self-similarity also 
with respect to a deflation. Note, however, that the S S S G  can be raised to a self-similarity 
group only when m = 2 .  

The n-gonal lattice L is a Bravais lattice but it includes many non-Bravais lattices 
as its sublattices. Some of them are invariant against G and they yield new LI classes 
of n-gonal quasilattices. The Penrose lattice can be constructed in this way from a 
non-Bravais sublattice of the decagonal lattice in 2~ (Janssen 1986). Also, several 
dodecagonal quasilattices are obtained from non-Bravais sublattices of the hyper- 
hexagonal lattice in 4~ (Niizeki 1988a). It is, however, complicated to show self- 
similarity of these 'non-Bravais-type quasilattices' (de Bruijn 1981, Niizeki 1988a) and 
a full argument on this subject will be presented in the following paper (Niizeki 

Watanabe et al (1987) showed that an octagonal quasilattice has an inflation with 
the ratio 2+a. This number is a PV number in Q ( d )  (&=a) but not a unit. It 
can be shown also that dodecagonal quasilattice has a self-similarity characterised by 
1 + &, which is a non-unit PV number in Q(&) ( tI2 = a). The feature of self-similarity 
characterised by a non-unit PV number will be discussed in a separate paper. 

All the lattice points in LQ(+, W )  are located on parallel lattice lines which are 
normal to the direction being parallel to 1 (Katz and Duneau 1986); the lattice lines 

1989). 
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Figure 4. The diffraction pattern of a decagonal quasilattice in figure 1. The intensity of 
a spot is proportional to the area of the relevant circle. Series of spots with increasing 
intensities are arranged radially; the ratio of the wavenumbers between an adjacent pair 
in a series is equal to the golden ratio. 

are arranged quasiperiodically along this direction. The same is true along other 
(n/2 - 1)  directions, lk, k = 1,2,  . . . , (n/2 - 1). A superposition of these lattice lines 
yields a Pleasants n-gonal quasiperiodic pattern in 2 ~ .  The details of this subject will 
be presented elsewhere. 
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